大数据可以解决的问题有哪些?

时间:2022-05-29 22:15
浏览:543
(新媒体指数大数据平台)大数据具体可以分为数据采集、数据分析和数据展现等几个部分,由于大数据采用的是非结构化的数据,与传统的数据分析相比价值密度、数据量大,通俗来说就是传统的数据分析相当于顺藤摸瓜,大数据分析相当于画地为牢。可以举几个大数据的实际应用场景,比如商业

大数据可以解决的问题有哪些?

大数据具体可以分为数据采集、数据分析和数据展现等几个部分,由于大数据采用的是非结构化的数据,与传统的数据分析相比价值密度、数据量大,通俗来说就是传统的数据分析相当于顺藤摸瓜,大数据分析相当于画地为牢。

可以举几个大数据的实际应用场景,比如商业营销,商家通过统一的数据标准在平台采集客户信息,分析客户偏好,有针对性的制定营销策略,这个模式目前在每个行业营销领域都很常见,再比如人工智能、物联网方面,这两个方面都是本身数据就是非结构化的,利用传统的数据分析方式无法有效处理,只能通过大数据的手段进行分析。

总之,大数据解决的问题不是哪一个领域而是每一个领域,不是某一时刻影响我们的生活而是每一刻都在影响我们生活。大数据仍然需要统一的数据标准作为支撑,具体解决的问题以及落地场景,还在不断的完善,随着技术以及时间的推移,大数据应用越来越广泛,解决的问题也是越来越多,可能后续的问题就是大数据还有哪些不能解决的问题。

(1)新媒体指数大数据平台:

大数据技术目前主要解决两个问题,大量数据情况下,单台机器无法进行计算以及存储问题,所以此时需要大数据技术进行解决。

分布式计算解决单台机器无法计算大数据问题,常见的分布式计算分为离线计算和实时计算计算机使用数据进行计算时,会把数据加载到内存中,但是由于单台机器的内存限制有限,当数据量过于巨大时,比如 1024 G数据,全部加载到内存是不现实的,因为现在的机器内存一般不会太大,虽然有这样大内存的机器,但是成本太高,一般不会选择使用一台机器来进行处理。

此时使用分布式计算技术,使用多台机器进行数据处理,每台机器本质是处理总数据的一个子集。打个比方,1024 G 的数据,有64台机器,那其实每台机器处理 16GB 的数据即可,这是可以实现的,而且都是廉价机器,总体成本不会太高。像现在的 Hadoop 的 MapReduce 技术,就是通过将数据分割,每个Map任务处理总体数据的一个子集,来解决大数据计算的问题。

分布式存储解决单台机器无法存储大量数据的情况,解决单机磁盘限制问题,支持水平扩展大数据最终本质都会存储在计算机的磁盘上面,单台机器磁盘无论再大,其磁盘容量都是有限制的。而对于分布式存储来说,当一台机器的磁盘不够时,它支持水平扩展机器,可以从一台变成多台,那总的磁盘大小就是这些机器的和,从而解决了单台机器磁盘不足问题。

分布式存储也是通过将数据进行水平划分或者垂直划分,每台机器存储的是整体数据集的一个子集,协同进行存储。而单机就一台机器, 虽然其磁盘支持更换,但始终是有限的,当达到特别大的时候,在进行磁盘容量扩展,成本也会非常大。一般公司都会选择廉价的机器,分布式的进行存储数据,那台机器坏了,在添加新的机器即可。

我是Lake,专注大数据技术原理、人工智能、数据库技术、程序员经验分享,如果我的问答对你有帮助的话,希望你能点赞关注我,感谢。

我会持续大数据、数据库方面的内容,如果你有任何问题,也欢迎关注私信我,我会认真解答每一个问题。期待您的关注

标签阅读:

登 录

登录即代表您同意《用户协议》《隐私协议》

注 册

我已阅读并同意《用户协议》《隐私协议》

忘记密码