历史最伟大的三大数学家是谁?

时间:2022-05-27 06:30
浏览:473
(全球的科技代表人物)在世界数学史上,最伟大的三位数学家,从古至今排列依次为阿基米德、牛顿(Newton)、高斯(Gauss)。一、阿基米德【Archimedes】(约前287年—前212年),伟大的古希腊哲学家、数学家、物理学家、力学家,静力学和流体静力学的奠

历史最伟大的三大数学家是谁?

在世界数学史上,最伟大的三位数学家,从古至今排列依次为阿基米德、牛顿(Newton)、高斯(Gauss)。

一、阿基米德【Archimedes】

(约前287年—前212年),伟大的古希腊哲学家、数学家、物理学

家、力学家,静力学和流体静力学的奠基人。出生于西西里岛的叙拉古。从小就善于思考,喜欢辩论。早年游历过古埃及,曾在亚历山大城学习。据说他住在亚历山大里亚时期发明了阿基米德式螺旋抽水机,今天在埃及仍旧使用着。第二次布匿战争时期,罗马大军围攻叙拉古,最后阿基米德不幸死在罗马士兵之手。他一生献身科学,忠于祖国,受到人们的尊敬和赞扬。

  阿基米德出生在古希腊西西里岛东南端的叙拉古城。在当时古希腊的辉煌文化已经逐渐衰退,经济、文化中心逐渐转移到埃及的亚历山大城;但是另一方面,意大利半岛上新兴的罗马帝国,也正不断的扩张势力;北非也有新的国家迦太基兴起。阿基米德就是生长在这种新旧势力交替的时代,而叙拉古城也就成为许多势力的角力场所。

  阿基米德的父亲是天文学家和数学家,所以阿基米德从小受家庭影响,十分喜爱数学。大概在他九岁时,父亲送他到埃及的亚历山大城念书。亚历山大城是当时世界的知识、文化中心,学者云集,举凡文学、数学、天文学、医学的研究都很发达,阿基米德在这里跟随许多著名的数学家学习,包括有名的几何学大师—欧几里德,在此奠定了他日后从事科学研究的基础。

二、Newton

牛顿(Sir Isaac NewtonFRS, 1643年1月4日~1727年3月31日)爵士,英国皇家学会会员,是一位英国物理学家、数学家、天文学家、自然哲学家和炼金术士。他在1687年发表的论文《自然哲学的数学原理》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里物理世界的科学观点,并成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;从而消除了对太阳中心说的最后一丝疑虑,并推动了科学革命。在力学上,牛顿阐明了动量和角动量守恒之原理。在光学上,他发明了反射式望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。在数学上,牛顿与戈特弗里德·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究作出了贡献。在2005年,英国皇家学会进行了一场“谁是科学史上最有影响力的人”的民意调查,牛顿被认为比[url]阿尔伯特·爱因斯[/url]坦更具影响力。

三、Gauss

高斯[1](Johann Carl Friedrich Gauss)(1777年4月30日—1855年2月

23日),生于不伦瑞克,卒于哥廷根,德国著名数学家、物理学家、天文学家、大地测量学家。

 

数学上的成就  1801年发表的《算术研究》是数学史上为数不多的经典著作之一,它开辟了数论研究的全新时代。在这本书中,高斯不仅把19世纪以前数论中的一系列孤立的结果予以系统的整理,给出了标准记号的和完整的体系,而且详细地阐述了他自己的成果,其中主要是同余理论、剩余理论以及型的理论。同余概念最早是由L.欧拉提出的,高斯则首次引进了同余的记号并系统而又深入地阐述了同余式的理论,包括定义相同模的同余式运算、多项式同余式的基本定理的证明、对幂以及多项式的同余式的处理。19世纪20年代,他再次发展同余式理论,着重研究了可应用于高次同余式的互反律,继二次剩余之后,得出了三次和双二次剩余理论。此后,为了使这一理论更趋简单,他将复数引入数论,从而开创了复整数理论。高斯系统化并扩展了型的理论。他给出型的等价定义和一系列关于型的等价定理,研究了型的复合(乘积)以及关于二次和三次型的处理。1830年,高斯对型和型类所给出的几何表示,标志着数的几何理论发展的开端。在《算术研究》中他还进一步发展了分圆理论,把分圆问题归结为解二项方程的问题,并建立起二项方程的理论。后来N.H.阿贝尔按高斯对二项方程的处理,着手探讨了高次方程的可解性问题。

  高斯在代数方面的代表性成就是他对代数基本定理的证明。高斯的方法不是去计算一个根,而是证明它的存在。这个方式开创了探讨数学中整个存在性问题的新途径。他曾先后四次给出这个定理的证明,在这些证明中应用了复数,并且合理地给出了复数及其代数运算的几何表示,这不仅有效地巩固了复数的地位,而且使单复变函数理论的建立更为直观、合理。在复分析方面,高斯提出了不少单复变函数的基本概念,著名的柯西积分定理(复变函数沿不包括奇点的闭曲线上的积分为零),也是高斯在1811年首先提出并加以应用的。复函数在数论中的深入应用,又使高斯发现椭圆函数的双周期性,开创椭圆函数论这一重大的领域;但与非欧几何一样,关于椭圆函数他生前未发表任何文章。

  1812年,高斯发表了在分析方面的重要论文《无穷级数的一般研究》,其中引入了高斯级数的概念。他除了证明这些级数的性质外,还通过对它们敛散性的讨论,开创了关于级数敛散性的研究。

  非欧几里得几何是高斯的又一重大发现。有关的思想最早可以追溯到1792年,即高斯15岁那年。那时他已经意识到除欧氏几何外还存在着一个无逻辑矛盾的几何,其中欧氏几何的平行公设不成立。1799年他开始重视开发新几何学的内容,并在1813年左右形成较完整的思想。高斯深信非欧几何在逻辑上相容并确认其具有可应用性。

(1)全球的科技代表人物:

谢邀,我是数学经纬网,一名985数学博士,我来回答一下这个问题。

不管是数学还是其它学科,都从来不乏大家。有些数学家是鸟,其他的则是青蛙。

鸟翱翔在高高的天空,俯瞰延伸至遥远地平线的广袤的数学远景。他们喜欢那些统一我们思想、并将不同领域的诸多问题整合起来的概念。青蛙生活在天空下的泥地里,只看到周围生长的花儿。他们乐于探索特定问题的细节,一次只解决一个问题。

2009年2月,数学物理学家弗里曼·戴森(Freeman Dyson)的一篇名为《飞鸟与青蛙》的演讲稿轰动世界,其将数学家分成“飞鸟”与“青蛙”的论述至今让人回味无穷。这是多么独到而精辟的见解!

数学问题就像荒原上的一个个宝藏,数学家便是挖宝的人。“飞鸟”型的数学家类似于行伍中的帅才,运筹帷幄,决胜百年;而“青蛙”型数学家则是披荆斩棘的大将,冲锋陷阵,专克难关。

接下来就给大家分享几位我心目中的帅型数学家。

笛卡尔——解析几何之父

【生平】:1596年3月31日生于法国,1650年2月11日逝于瑞典,法国哲学家、数学家、物理学家。

【成就】:他对现代数学的发展做出了重要的贡献,因将几何坐标体系公式化而被认为是解析几何之父。他还是西方现代哲学思想的奠基人之一,是近代唯物论的开拓者,提出了“普遍怀疑”的主张。他的哲学思想深深影响了之后的几代欧洲人,并为欧洲的“理性主义”哲学奠定了基础。

牛顿——百科全书式的“全才”

【生平】:艾萨克·牛顿(1643年1月4日—1727年3月31日)爵士,英国皇家学会会长,英国著名的物理学家,百科全书式的“全才”,著有《自然哲学的数学原理》、《光学》。

【成就】:他在1687年发表的论文《自然定律》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里物理世界的科学观点,并成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;为太阳中心说提供了强有力的理论支持,并推动了科学革命。

在力学上,牛顿阐明了动量和角动量守恒的原理,提出牛顿运动定律。在光学上,他发明了反射望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。   

在数学上,牛顿与戈特弗里德·威廉·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究做出了贡献。   

在经济学上,牛顿提出金本位制度。(没想到金本位居然是牛顿提出来的,学了这么多年数学的我一脸震惊)

高斯——数学之王

【生平】: 高斯出生于德国一个穷困人家。 他从小就有算学异禀。他的才智受到当地Brünswick公爵的关注, 公爵就一直资助他完成大学教育,取得博士学位,并出版数学巨著《整数论研考》。

【成就】:高斯年冠十九,就在数学上有登峰造极的表现:他突破数学史上两千多年的沉寂, 以直尺与圆规作出正十七边形的图形来。而且他维持如此杰出的研究质量达半个世纪之久。(我十九岁的时候,还是大二,还在数学分析的海洋里遨游呢)

他的研究范围广泛, 遍及纯数学与应用数学,研究内容新颖、深入。 这使他成为十九世纪科学领域上最突出的人物。 他在曲面学上的研究, 更是导引黎曼创造黎曼几何学,并诱发二十世纪初爱因斯坦作出广义相对论来。

高斯就业以后一直定居在哥廷根(Göttingen)。他去世后不久,哥廷根地方的领主汉诺威王乔治五世(George V)为表彰他的丰功伟业,敕令铸造一个七公分直径的纪念章赠与高斯家族。纪念章边缘以拉丁文刻着“Georgius V. rex Hannoverage Mathematicorum principi”(汉诺威君主乔治五世向数学家之王致敬)。 从此, 称呼高斯为“数学之王”的名号不胫而走。

在战争中,有将有帅,这好像是本来就应该如此的,科学研究也是如此。当然数学发展过程还有很多帅才,篇幅有限,只列出了三个,欢迎大家一起交流和讨论!

标签阅读:

登 录

登录即代表您同意《用户协议》《隐私协议》

注 册

我已阅读并同意《用户协议》《隐私协议》

忘记密码